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I  ABSTRACT 

A 

The ability of a set of simple predicates to capture characteristic patterns 

in a parametric representation of vowels in continuous speech was 

investigated with the aid of an efficient conjunctive pattern recognition 

and classification system. The results compare favourably with those 

produced by a cluster-based minimal Euclidean distance technique, run 

over the identical training and test samples. The predicates used are 

similar to auditory receptive fields. 
"^ 

/ Cereerai Introduction 

One of the most challenging problems in the construction of Speech 

Understanding Systems1 is that of finding an inexpensive but accurate characterization 

of phones in terms of the initial, parametric, representation of the speech wave. A 

good labeller would reduce the amount of effort expended by the complex heuristic 

knowledge sources (such as those for syntax and semantics) when they are required to 

reduce the uncertainty due to poorly performing bottom-up phone and word 

recognizers. Regrettably, variability in the realization of phones in continuous speech 

militates against any simple-minded approach to labelling and no method has yet been 

forthcoming which is  both  accurate and inexpensive at run-time. It is  our  belief, 

This research was supported in part by the Defense Advanced Research Projects 

Agency under contract no. F44620-73-C-0074 and monitored by the Air Force Office 

of Scientific Research. 
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however, that the general but simple conjunctive pattern learning and classification 

technique and feature-description methodology described below has the ability to deal 

effectively with such difficult task domains. The phone recognition task is a hard 

problem which provides a good opportunity to develop the method in a domain subject 

to a high degree of variability. Moreover, the solution will be of immediate practical 

use. 

The approach to be described is one of finding pattern templates which are 

coniunctive abstractions of simple feature descriptions of training examples from each 

class. A conjunctive abstraction is the intersection of the sets of features (or 

predicates) used to describe several training examples from the same class. Because 

the abstraction represents properties which are true of all the exemplars from which 

is derived, it may be used as a template for pattern classification. Any test item 

exhibiting all the f .tures in the templates is assigned to the same class as the 

examples from which it was abstracted. The abstractions are found by a procedure 

called SLIM (for Space Limited Interference Matching)2. This procedure finds maximal 

conjunctive abstractions in feature-spaces, and has been implemented as an interactive 

system in such a way as to facilitate the exploration of different feature 

representations. The technique of feature encoding developed in the course of this 

s:udy appears to have a general utility in conjunctive pattern learning. Furthermore, 

there are parallels with physiological feature encoding and it may provide a bridge 

between natural and artificial speech processing methodologies. 

The remainder of this paper is organized as follows, First we describe SLIM and 

the feature-encoding method. We then describe the data and their feature 

representation and the classification experiment. The results obtained are then 

compared with those from a labelling system in current use which employs a Euclidean 

distance technique applied to the same training and test examples. 

We are able to conclude that the method works better than the one in current 

use for the vowels upon which the experiments were conducted. Moreover, an 

examination of the form of the abstractions suggests that formant peaks may not be as 

good indicators of vowel class as their "shoulders". 

2 SUM 

In this section we first give a summary of SLMs operation and then describe it 

in sufficient detail to understand the remainder of this paper. 

I L 
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The general nature of SLIM's application is as follows. A number of distinct 

training examples is provided for each of several mutually exclusive pattern classes. 

SLIM operates with the examples of each class to produce abstractions. Only those 

which are expected to perform well as classiticatory templates are retained. 

Subsequently, novel test iten are compared with the abstracted templates and are 

classified as belonging to the class associated with the matched template which 
performs best. 

We shall now be more explicit. SLIM first prepares a description of each 

exemplar in terms of user-defined boolean features. It then attempts to find 

characteristic conjunctive abstractions which distinguish specified classes from each 

other. The basic operation by which this is done is interference matching. The effect 

of interference matching applied to the descriptions of two exemplars is to produce a 

schema (or abstraction) which comprises all and only the features common to both. 

Because a schema is a set of features, as each encoded exemplar, exactly the same 

matching process may be applied to a schema and an exemplar. 

The procedure of abstracting new diagnostic pattern templates for a class is 

called decomposition. The class for which characteristic patterns are to be induced is 

called the positive class. A negative class is also defined, usually as the universe of 

exemplars minus those in the positive class. Each exemplar from the positive class is 

taken in turn and interfered with each schema in the dynamic decomposition list- (See 

Figure 1.) At the outset this list is empty and a copy of the first exemplar is placed in 

the list. For each subsequent positive exemplar, one schema is derived from 

Interference matching applied to it and aach schema in the dynamic decomposition list. 

In addition, the exemplar is itself entered as a schema. The schemata so formed are 

then evaluated for placement in the list, and then the next exemplar is processed. The 

decomposition is complete when all the positive exemplars have been processed. 

The evaluation mentioned above is a calculation of the schema's performance as 

a diagnostic indicator of the positive against the negative class. The performance 

measure in current use computes a weighted difference between the a posteriori 

expected hit rate (Le. the frequency of matches within the positive class) and the a 

posteriori expected false alarm rate {i.e. the frequency of matchas by that schema 

within the negative class). The hit rate and false alarm rate are weighted by a gain and 

a loss factor, respectively^. 

The number of ochemata which may be generated in this fashion rises 

exponentionally with the number of training exemplars, and so some techniques are 

used to limit the size of the decomposition list. The power of SLIM derives from its 

: ; 
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heuristic methods for preventing a combinatorial explosion without seriously 

compromising the discriminative power of the templates induced. The basis of SLMs 

approach lies in the performance measure. Performance limits may be set which act as 

thresholds for a new schema's acceptance into the dynamic decomposition list. The 

schemata are ordered in the dynamic decomposition list according to their 

performance. In addition, a limit on the length of the dynamic decomposition list may 

be set. This will have the effect of constantly pruning off the more poorly performing 

schemata. Other heuristic constraints may be applied to the speed the process with 

minimal discriminative loss2. The ones mentioned here are those referred to in the 

following sections. 

This process is usually repeated for each of a number of classes. At the 

completion of the decomposition for each class, its dynamic decomposition list is 

merged into the final decomposition list. Once a final decomposition list has been 

formed, it is possible to classify test exemplars. Each exemplar to be classified is 

encodfcd into the feature representation and then matched against each schema in the 

decomposition list in turn. If a match occurs, i.e. if the exemplar contains all the 

features in one of the schemata, it is assigned to the class from which the schema was 

derived. The process is self-terminating, so that it is the highest-performing match 

which determines the classification. 

3 The OuerlappLna Receptive-Field Feature Representation 

Learning is considered here to be a process of inducing pattern templates which 

are as discriminating {Le, precise) as possible and at the same time as general 

(inclusive) as necessary to characterize each class, These two goals are in conflict in 

that precision is necessary to take advantage of fine differences, but it is equally 

necessary to infer beyond the specific training examples in order to encompass novel 

examples within any domain which is subject to variability. One of the gcalr of our 

work is to find features which can do both these tasks well, SLIM is suiteJ to such an 

effort, because what generalization is not accomplished with the individual schemata 

themselves will be reflected in the decomposition list as a whole; the list may be 

viewed as the disjunction of the schemata which comprise It. Because the dynamic 

decomposition list is itself the basis for incremental learning, any extra capacity for 

generalization provided by a particular set of features will be reflected multiplicatively 

in succeeding generations of schemata. 
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The solution presented here is to   describe each value in terms of features 

which are series of of overlapping intervals. For the purposes of exposition, let us 

consider a value of 38 on some dimension. The features could be the ranges [5:34], 

. [10:39], [15:44], etc.  Let us give these features names: 

Fl: [5,34] 
F2: [10,39] 
F3: [15,44] 
F4: [20,49] 
F5: [25,54] 
F6: [30,59] 
F7: [35,64] 
F8: [40,69] 
F9: [45,74] 
F10: [50,79] 

With this set of features, the value 38 on a dimension whose values range from 

5 to 79 would b^ represented as the conjunctive product 

F2AF3AF4AF5AF6AF7 

because  these  are  all  the predicates which are true for this  value.  Interference 

matching with the feature representation for 48, which becomes 

F4AF5AF6AF7AF8AF9, 

gives the conjunction 

F4AF5AF6AF7 

of common features. It should be noted that this schema defines an interval from 35 

to 49 which, within the framework adopted, is at once the most precise and the most 

general observation which can be made from the two events. This method of 

overlapping intervals thus proviJes a solution to the problem of simultaneously 

discriminating and generalizing within a conjunctive abstraction framework. 

This descriptive methodology can be considered as a uniform crding technique 

with four parameters. They are: 

(1) The maximum generalization interval. G, which is the distance between the 

upper and lower bound of each feature interval. 

(2) The maximum discrimination interval. D, which is the distance by which 

adjacent features are shifted with respect to each other and is equivalent to the 

JND of a learning procedure based on these features. 

(3) The lower limit. L, which is the lowest value codable in the series of features. 

(4) The upper Hmit, U, which is the highest value codable in the series of features. 

We shall now estimate the efficiency of this form of interval encoding.   Given the 
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parameters G, D, L and U (G>D), the total number of features required to encode 

corresponding values is always < 2*(U-L)/D -1, the value when G-(U-L), and is always 

> (U-L)/(2*D), the value when G-(U-L)/2. Thus there is a trade-off between big G and 

small number of features. Let us consider an alternative method of interval encoding. 

The total number of intervals which can be represented by conjunctions of successive 

overlapping intervals (i.e. the number of features needed if each interval were 

independently coded by a feature) is (U-L)/D when G=D and ((U-L)/D)*{((U-L)/D)+l)/2 

when G-{U-L), and when G-(U-L)/2 is (3/8)*((U-L)/D)2. Thus, as an example, when 

G=100, 0^5, LMOO and L=0, the preferred method requires 39 features while the 

alternative method needs 210, giving an economy of 3 to 1. If G-50 instead of 100, the 

corresponding numbers are 20 and 150, giving an economy of 7.5 to 1. Clearly, as D 

decreases or as (U-L) increases, for any G, the relative efficiency of the preferred 

method, which is quadratically related to these parameters, becomes increasingly 

significant. Thus, if learning is to be based on interval discrimination and generalization, 

the proposed code if a highly efficient one. 

We are encouraged in our use of this approach by several physiological 

observations. Firstly, the receptive fields of auditory perceptual system neurones are 

apparently distributed in an overlapping manner3. Secondly, the shapes of auditory 

tuning curves, which define the frequency characteristics of auditory receptive fields, 

are often wide4, which suggests that the square window nature of our features may be 

appropriate. Thirdly, the proposed method is a very general method (not at all 

language-specific, as a formant-extraction approach might be) and may help to explain 

how animals can be trained to discriminate between speech sounds . Lastly, the 

proposed code is a redundant one which would produce well-controlled generalizations 

if features were to be lost for some reason; although we are not able to go into the 

possibility or significance of discarding features from schemata here, we wish to point 

out the method's potential for graceful degradation under such loss. 

The method, which we may call the overlapping receptive field representation, is 

applicable to any ordinal scale and may be used for more than one dimension at once, 

as is the case in the current work. 

!      \ 

4 The Parametric Representation and Us Preparation 

The parametric representation employed here provides, for each centisecond, an 

amplitude  for each of the   128 frequencies which may  be sampled  at  39.625 Hz 

__.._. ,  __ _ 
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intervals between 39.625 and 5000 Hz, They are derived from an original 10 kHz 

digitization via the discrete fast Fourier transform of a 14-pole Linear Predictive 

Coefficient filter. This provides a smoothed, amplitude-normalized spectrum, Although 

the signal energy for each centisecond is available along with the spectral data, only 

the latter were used in the current experiment. Figure 2 shows the spectrum of the 

central centisecond from an example of /!/. 

The data were drawn from two corpi of utterances spoken by the same General 

American male speaker. Each corpus, one of 27 sentences and one of 40, was 

segmented and labe'led by a phonetician according to aural and waveform criteria. All 

occurrences of the four phones /i/, /I/, /a/ and /»/ were considered. Phones less 

than 3 centiseconds in duration were rejected. Of those remaining, the ten examples 

nearest the centre of each corpus were set aside to be used for testing the 

discrimination produced by the system. The remaining exemplars were those used i,n 

training. There were 64 /I/, 99 /I/, 111 /a/ and 55 /a/. They were used for 

training by both SLIM and INTRAC, a Euclidean distance, cluster-based pattern 

recognition program6. 

Each sample was encoded by the overlapping receptive field technique 

described above, simultaneously in both of the amplitude and the frequency 

dimensions. There were six euch features for the encoding of each amplitude. The 

normalization process in the LPC encoding ensured that most of the spectral amplitude 

points fall within 20 units of 256. In terms of the description above, the features for 

the amplitudes had a G of 30, a D of 5, an L of 230, and a U of 285, thus providing a 

maximum discrimination of 5 units and a maximum generalization of 30 over the interval 
[230,285]. 

The raw amplitudes at each frequency were not used, but instead the maxima 

and minima in each frequency interval of 485.5 Hz, considered at successive intervals 

of 158.5 Hz, were encoded. This sampling started at 198,125 Hz. There were 29 such 

frequency samples for each centisecond's spectrum, and hence there were a total of 

29x2x6-348 features. 

The features are gross in that they cover an interval of 30 units, while most of 

the spectral amplitude points In the Jata fall within a 40 unit interval. 

r 
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5 The Production of the Decompositions 

Each exemplar having been read into SLIM and encoded, the next step before 

decomposition was to set the values of the space-limiting heuristics. Th« maximum size 

of the dynamic decomposition list was set to 25. The lower admissible limit on 

performance was set to -.1. (A negative value is useful because a poorly performing 

early schema may ultimately spawn a better performing ona.) The values of loss and 

gain in the performance metric were  5 and 1, respectively. 

In this way, a final decomposition list was produced, consisting of the dynamic 

decomposition list resulting from decomposition of each of the four phone classes 

against all the others. On classification of the test items, it was found in 23 of the 80 

cases a.e. 28.755!.) that the data were so variable that none of the general schemata 

produced could classify an exemplar. In that case an alternative classification method 

within SLIM was employed. Here the decomposition process is repeated, but with the 

additional constraint that when each, stored exemplar is converted into a schema for 

possible addition to the decomposition list only those features which are also present 

in the example to be classified are retained. Hence only those features which are 

relevant to the item to be classified will enter into the decomposition. This procedure 

is called filtered decomposition to distinguish it from the unfiltered abstraction method 

described in Section 2 above. Those test exemplars remaining unclassified by the 

unfiltered technique were classified according to which filtered decomposition list 

contained the highest performing schema. 

6 Results 

\ 

( 

> 

Confusion matrices for the classification results for SLIM and INTRAC are 

presented as Tables 1 and 2, respectively. The forms of the matrices are similar, 

suggesting that the two methods respond to intra-class variability similarly. However, 

SLIM was as good as, or better than, INTRAC in 13 of the 16 cells of the confusion 

matrices. The case where SLIM is markedly worse is the phone /I/, which also the 

worst for INTRAC. A measure of overall success is the proportion of elements on the 

right diagonal of the matrices. SLIM's success is 0.64 on this basis, while INTRAC's 

success is 0.54. 

Figures 2 and 3 show the centre of the largest cluster for / i / found by INTRAC 

and the highest performing schema for /I/ found by SLIM, respectively,   Formant 
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peaks of Figure 2 are largely absent from Figure 3. 

7 ConcLusLons 

Firstly, we can conclude that SLIM may be used effectively to find good 

characterizations in a very difficult area, at the acoustic level of description of 

continuous speech. Not only are the recognition rates generally good, but in most 

cases they show the SLIM outperforms those of another method in current use, when 

applied to precisely the same data. The phone /I/ gave SLIM more trouble than it did 

to INTRAC. We feel that this is a sign that our features are still insufficiently general, 

and we are continuing to refine our feature representation. 

Secondly, this is accomplished without recourse to sophisticated techniques of 

description, such as formant extraction. Indeed, formants are somewhat less in 

evidence in the schemata, as Figures 2 and 3 exemplify, even though vowels were the 

training data, 

Thirdly, we have given an example of how SLIM may be used to explore the 

ability of theories about relevant features of speech by testing their ability to 

discriminate between phones. Our work, to date, has investigated only some of the 

simplest forms of description which might be used. We are continuing this study by 

working with other phones, additional speakers and by trying different simple feature 

representations. 
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Hand Labels 

IM IM /a/ /*/ total 

/-/ 19 8 0 0 27 

SLIM /I/ 1 4 2 2 8 
Labels /»/ C 3 13 3 19 

M 0 5 5 15 25 
;otal 20 20 20 20 80 

Table 1: Confusion Matrix for SLIM 

Hand Labels 

/i/ IM /3/ 1*1 total 

IM 13 0 0 1 14 

INTRAC m 5 8 3 6 22 

Labels N 1 6 13 4 24 

1*1 1 6 4 9 20 
total 20 20 20 20 80 

Table 2: Confusion Matrix for INTRAC 
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